Juxtacrine signaling is inherently noisy.

نویسندگان

  • Tomer Yaron
  • Yossi Cordova
  • David Sprinzak
چکیده

Juxtacrine signaling is an important class of signaling systems that plays a crucial role in various developmental processes ranging from coordination of differentiation between neighboring cells to guiding axon growth during neurogenesis. Such signaling systems rely on the interaction between receptors on one cell and trans-membrane ligands on the membrane of a neighboring cell. Like other signaling systems, the ability of signal-receiving cells to accurately determine the concentration of ligands, is affected by stochastic diffusion processes. However, it is not clear how restriction of ligand movement to the two-dimensional (2D) cell membrane in juxtacrine signaling affects the accuracy of ligand sensing. In this study, we use a statistical mechanics approach, to show that long integration times, from around one second to several hours, are required to reach high-sensing accuracy (better than 10%). Surprisingly, the accuracy of sensing cannot be significantly improved, neither by increasing the number of receptors above three to five receptors per contact area, nor by increasing the contact area between cells. We show that these results impose stringent constraints on the dynamics of processes relying on juxtacrine signaling systems, such as axon guidance mediated by Ephrins and developmental patterns mediated by the Notch pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A framework for modeling of juxtacrine signaling systems.

Juxtacrine signaling is intercellular communication, in which the receptor of the signal (typically a protein) as well as the ligand (also typically a protein, responsible for the activation of the receptor) are anchored in the plasma membranes, so that in this type of signaling the activation of the receptor depends on direct contact between the membranes of the cells involved. Juxtacrine sign...

متن کامل

Lateral induction by juxtacrine signaling is a new mechanism for pattern formation.

Many signaling molecules in epithelia are now known to function in a membrane-bound form, binding to receptors on immediately neighbouring cells. This "juxtacrine" mode of communication has been well studied in the case of lateral inhibition, where ligand binding at the cell surface downregulates ligand and receptor expression, and is known to generate spatial patterns with a wavelength of exac...

متن کامل

A new role for Hedgehogs in juxtacrine signaling

The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not pr...

متن کامل

The cis side of juxtacrine signaling: a new role in the development of the nervous system.

Cell-cell communication by juxtacrine signaling plays a key role in the development of the nervous system, from cell fate determination through axonal guidance to synaptogenesis. Interestingly, several juxtacrine signaling systems exhibit an inhibitory interaction between receptors and ligands in the same cell, termed cis inhibition. These include the Notch, semaphorin and ephrin signaling syst...

متن کامل

The membrane-anchoring domain of epidermal growth factor receptor ligands dictates their ability to operate in juxtacrine mode.

All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 107 10  شماره 

صفحات  -

تاریخ انتشار 2014